

The Effectiveness Of Mold Treatments On The Post Katrina Gulf Coast

The Preliminary Findings of the Hope VI Experiment, Biloxi, Mississippi, 2006

History

Taken directly from the proposal:

"The post-Katrina landscape had a scope and abundance of mold growth that mold abatement experts had never seen before. The large-scale response to this problem was historically slow. Due to lack of research data, governments and major non-profit organizations have balked at devoting resources, conducting inspections, and assuming liability for the mold issue."

- The purpose of the Hope VI Experiment, as explicitly stated in the study proposal, is to "identify the effectiveness of 4 mold removal methods being used on houses affected by Hurricane Katrina and to determine cost effectiveness and efficiency of the various processes."
- The following presentation outlines the preliminary findings of the study, and concludes with a recommendation.

- 4 Processes, Varying Levels of Time, Labor, and Expenses
- 1) Hands On Network Cleanup Recommendations
- 2) Kolopro Mold Systems & Solutions Chemical-Free, Anti-Static Mold Treatment
- 3) Mississippi Department of Health Recommendations
- 4) LSU Recommendations for Mold Cleanup

- Process recommended to Hands On over the Fall of 2005 by various mold professionals.
- Considerable visible scoring success in the field. 4 Step Process.

Step 1: Grinding and Scraping

- -Purpose: To physically remove visible, living mold as well as invisible spores from the wood.
- -Procedure: Scrape mold off all surfaces of house using wire brushes and angle grinders

Step 2: Vacuuming

- -Purpose: To physically remove dislodged spores from the house
- -Procedure: Use a vacuum equipped with a HEPA filter to vacuum every surface in the house

Step 3: Wiping

- -Purpose: To collect any spores that were not removed by vacuuming or grinding and scraping, and remove from the house
- -Procedure: Using a rag that has been dampened with an ammonia-based sanitizing solution, hand-wipe every surface in the house

Step 4: Sealing

- -Purpose: To create a surface that inhibits future mold growth
- -Procedure: Using a paint primer, paint every wood surface in the house.

Kolopro Mold Systems

- Chemical-free, anti-static method of fogging as an alternative for people with multiple-chemical sensitivities
 - Specifically, use of trisodium phosphate derivative that polymerizes surfaces with a dry encapsulating film via fog application, debilitating mold membranes on a microscopic level and retarding further growth
- Chemical is applied by fog machines, approximately 10 minutes per room in the building, with appropriate ventilation via fans.
- After fogging is complete, visible mold wiped off with Kolopro Solution

Mississippi Department of Health Recommendations

- Removal of Moldy Materials
- Soap Cleanup
 - Non-ammonia soap or detergent, in hot water, scrub the entire area affected by mold. Use stiff brush on block walls and uneven surfaces
- Disinfection
 - Use solution of 10% household bleach

LSU Recommendations for Mold Cleanup

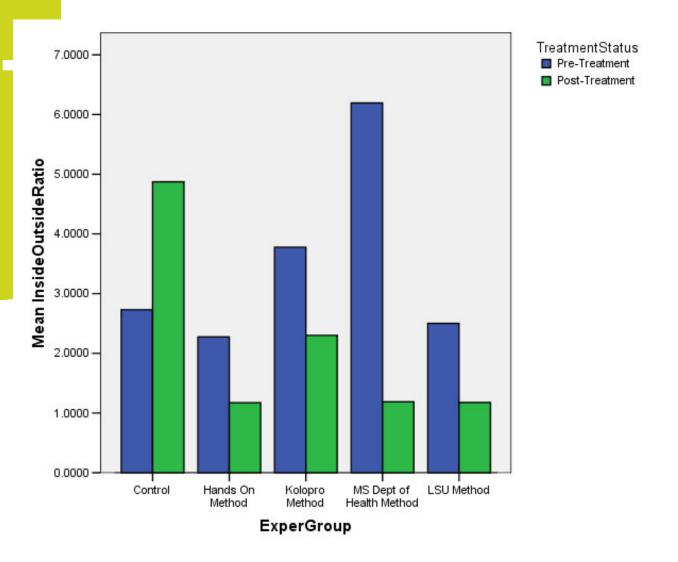
- Clean and Disinfect
 - "Cleaning should remove, not just kill, the mold, because dead spores can still cause health problems."
 - "Disinfect wall cavities and other materials <u>after</u> <u>cleaning</u>"
- Consider Borate Treatment
 - "Having a professional pest control applicator apply a borate treatment to wood framing can provide resistance to termites, decay and mold."
 - ReddPest Solutions contracted to apply Boracare with MoldCare to wood following cleaning/disinfecting

Pre-Experimental Considerations?

- Weather Conditions
 - Weather conditions on given days were qualitatively assessed. A record of temperature and humidity inside and outside units was kept.
- Documentation
 - Before & After Pictures of Every Building Were Retained
- The Main Idea
 - The thrust of the Hope VI experiment is based around the idea of volunteer, non-skilled mold removal, and all results should be interpreted with that facet in mind.

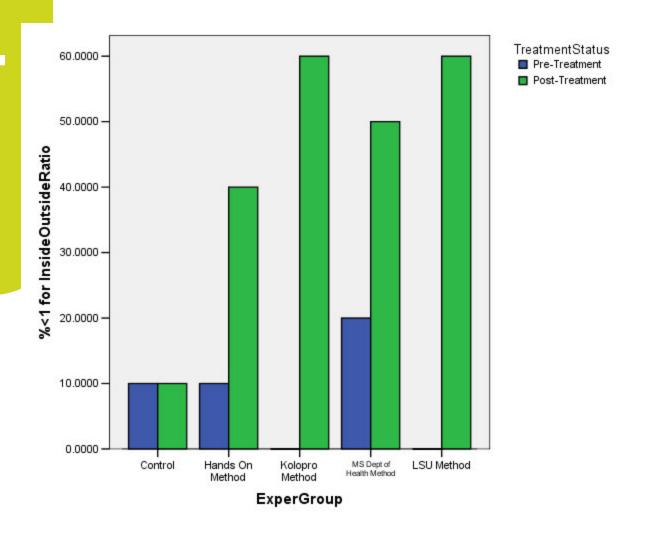
More Pre-Experiment Facts

- 51 Buildings with 1, 2, or 4 housing units
- All buildings homogeneously prepared for mold removal by the BHA and HOGC interiors crews
- Each building randomly assigned to one of four experimental groups or a control group
- Post-experiment, control buildings and fail buildings would be treated by the most successful method



Non-viable Air Samples

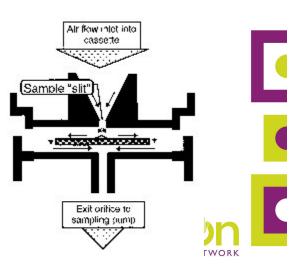
- Collected using a Zefontm Bio-Pump, calibrated to collect 75 Liter air flow sample into a slit-impaction sampling device
- Air samples analyzed at Envrionmental Microbiology Laboratory, Inc.
- Outside air samples necessary in order to compare inside to outside spore counts
 - Spore counts vary by day, therefore environmental relativity is crucial for determining scoring
- In fully mucked post-Katrina homes built in 2004-2005, an inside to outside ratio of 1 or less is ideal.


Mean Inside/Outside Counts

	Pre-	Post-
Control	2.73	4.87
Hands On	2.28	1.17
Kolo- pro	3.78	2.30
MS Dept. of Hlth.	6.19	1.19
LSU	2.50	1.17

Of Pass Buildings

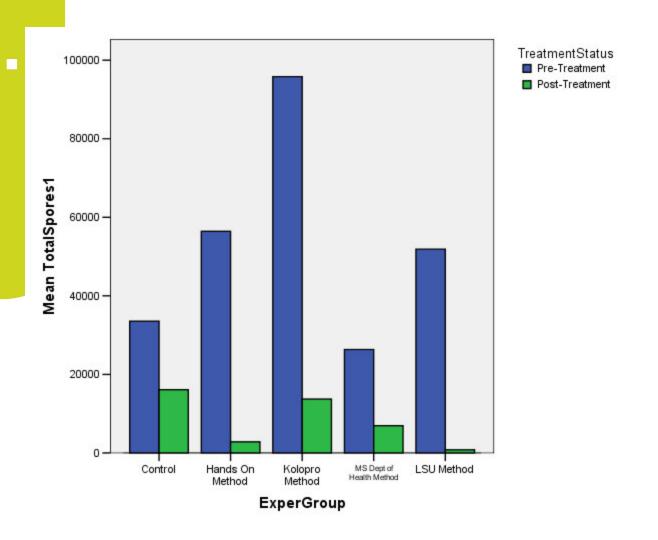
	Pre-	Post-
Control	10%	10%
Hands On	10%	40%
Kolo- pro	0%	60%
MS Dept. of Hlth.	20%	50%
LSU	0%	60%

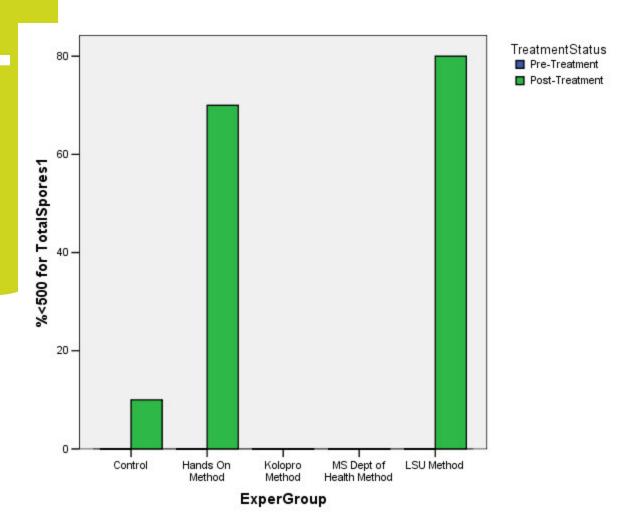


What Does This Mean?

- The air samples were non-viable, meaning that the spore traps did not distinguish between live and dead spores
- Therefore, spore traps are a snapshot of postremediation counts at a given moment
- Information needs to be considered along with viable sampling methods to predict sustainability of remediation...

Viable Mold Sampling

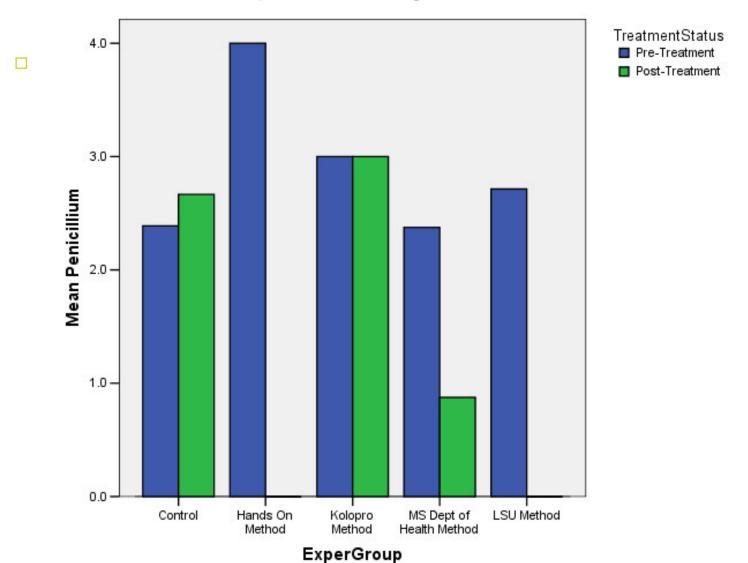

- In contrast to air sampling and tape lifts, fungal culture swabs provided information on the number of colonyforming units (or CFUs) that remained on pre-determined areas of growth after remediation.
- Results on these samples is much more indicative


Mean Number of CFUs

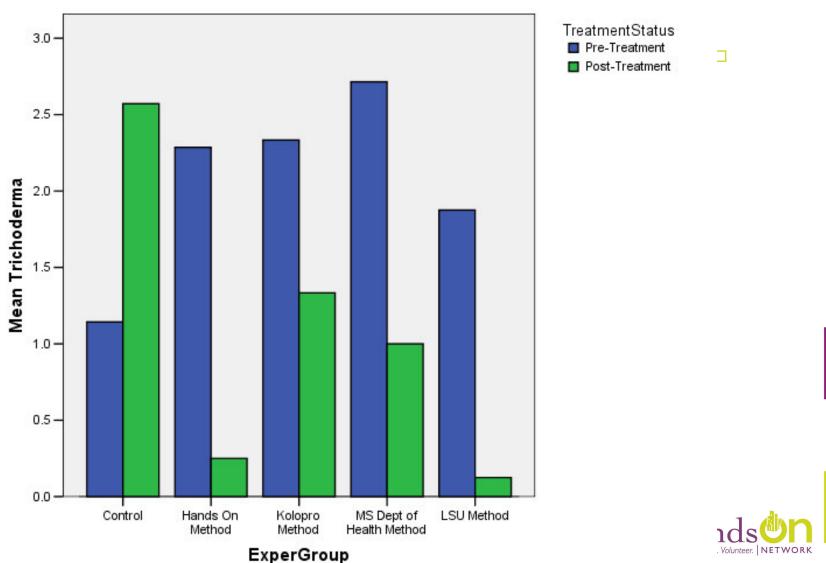
	Pre-	Post-
Control	33,541	16,107
Hands On	56,438	3,528
Kolo- pro	95,814	13,720
MS Dept. of Hlth.	26,345	6,948
LSU	51,893	809

Percent of Buildings With 500 CFUs or Less

	Pre-	Post-
Control	0%	10%
Hands On	0%	70%
Kolo- pro	0%	0%
MS Dept. of Hlth.	0%	0%
LSU	0%	80%



Tape Lifts


- Additional non-viable tests were taken utilizing direct microscopic examination methods
- EMLab Scoring Method
 - <1+ → Very Light Growth
 - 1+ → Light Growth
 - 2+ → Moderate Growth
 - 3+ → Heavy Growth
 - 4+ → Very Heavy Growth

Mean Visibility Scoring of Penicillium

Mean Visibility Scoring of Trichoderma

Conclusions

- Bleach and Fog proved erratic in their effectiveness; some houses hugely successful, most huge failures
- Much more successful were wire-brushing and non-ammonia sanitization, followed by either Kilz or Boracare
- Boracare's advantages:
 - Three times as effective at viable CFU reduction as Kilz
 - Is highly soluble, penetrates wood to eradicate internal fungal rot that Kilz can't reach
 - As a sealant, Kilz can incubate moisture in wood, accelerating rot issues and leading to structural failure
- Boracare's disadvantages:
 - Varied state-by-state pesticide application laws create additional step for relief groups desiring to apply Boracare with Moldcare
 - Cost and accessibility...

Cost/Benefit Analysis

- Costs of process are <u>equivalent</u> for Hands On method and LSU method <u>up to sealant application.</u>
- Cost Comparison for Sealant:

Product	Retail Cost per Gallon	Cost for 4,000 sq. ft.
Kilz 2 Latex Paint Primer	\$39.46	\$157.84
Boracare Pesticide Application	\$83.75	\$418.75

Conclusions

- In the situation of immediate disaster response,
 Boracare with Moldcare is the most effective long-term solution for mold abatement
- However, given cost constraints and attainability of product, Hands On's process using a latex paint sealant is a viable alternative for remediation
- In either case, the MS Department of Health and Kolopro methods of mold remediation are not effective alternatives.
- If there are any additional inquiries, please direct to <u>Guillermo Olivos</u>, Primary Investigator.

